metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.166D10, C10.752+ (1+4), C4⋊1D4.7D5, (D4×Dic5)⋊33C2, (C4×Dic10)⋊50C2, (C2×D4).114D10, C20.133(C4○D4), C4.17(D4⋊2D5), C20.17D4⋊25C2, (C4×C20).202C22, (C2×C20).634C23, (C2×C10).257C24, C2.79(D4⋊6D10), C23.63(C22×D5), (D4×C10).160C22, C4⋊Dic5.380C22, (C22×C10).71C23, C22.278(C23×D5), C23.D5.71C22, C23.18D10⋊26C2, C5⋊5(C22.53C24), (C4×Dic5).162C22, (C2×Dic5).133C23, (C2×Dic10).308C22, C10.D4.163C22, (C22×Dic5).156C22, C10.95(C2×C4○D4), (C5×C4⋊1D4).6C2, C2.59(C2×D4⋊2D5), (C2×C4).595(C22×D5), SmallGroup(320,1385)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 726 in 236 conjugacy classes, 99 normal (13 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×4], C4 [×9], C22, C22 [×12], C5, C2×C4, C2×C4 [×2], C2×C4 [×12], D4 [×10], Q8 [×4], C23 [×4], C10, C10 [×2], C10 [×4], C42, C42 [×4], C22⋊C4 [×12], C4⋊C4 [×6], C22×C4 [×4], C2×D4 [×6], C2×Q8 [×2], Dic5 [×8], C20 [×4], C20, C2×C10, C2×C10 [×12], C4×D4 [×4], C4×Q8 [×2], C22.D4 [×4], C4.4D4 [×4], C4⋊1D4, Dic10 [×4], C2×Dic5 [×8], C2×Dic5 [×4], C2×C20, C2×C20 [×2], C5×D4 [×10], C22×C10 [×4], C22.53C24, C4×Dic5 [×4], C10.D4 [×4], C4⋊Dic5 [×2], C23.D5 [×12], C4×C20, C2×Dic10 [×2], C22×Dic5 [×4], D4×C10 [×6], C4×Dic10 [×2], D4×Dic5 [×4], C23.18D10 [×4], C20.17D4 [×4], C5×C4⋊1D4, C42.166D10
Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2+ (1+4), C22×D5 [×7], C22.53C24, D4⋊2D5 [×4], C23×D5, C2×D4⋊2D5 [×2], D4⋊6D10, C42.166D10
Generators and relations
G = < a,b,c,d | a4=b4=c10=1, d2=b2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b, dcd-1=c-1 >
(1 56 51 6)(2 7 52 57)(3 58 53 8)(4 9 54 59)(5 60 55 10)(11 89 21 71)(12 72 22 90)(13 81 23 73)(14 74 24 82)(15 83 25 75)(16 76 26 84)(17 85 27 77)(18 78 28 86)(19 87 29 79)(20 80 30 88)(31 36 64 69)(32 70 65 37)(33 38 66 61)(34 62 67 39)(35 40 68 63)(41 130 158 103)(42 104 159 121)(43 122 160 105)(44 106 151 123)(45 124 152 107)(46 108 153 125)(47 126 154 109)(48 110 155 127)(49 128 156 101)(50 102 157 129)(91 138 133 96)(92 97 134 139)(93 140 135 98)(94 99 136 131)(95 132 137 100)(111 148 143 116)(112 117 144 149)(113 150 145 118)(114 119 146 141)(115 142 147 120)
(1 73 63 28)(2 29 64 74)(3 75 65 30)(4 21 66 76)(5 77 67 22)(6 23 68 78)(7 79 69 24)(8 25 70 80)(9 71 61 26)(10 27 62 72)(11 33 84 54)(12 55 85 34)(13 35 86 56)(14 57 87 36)(15 37 88 58)(16 59 89 38)(17 39 90 60)(18 51 81 40)(19 31 82 52)(20 53 83 32)(41 148 125 98)(42 99 126 149)(43 150 127 100)(44 91 128 141)(45 142 129 92)(46 93 130 143)(47 144 121 94)(48 95 122 145)(49 146 123 96)(50 97 124 147)(101 119 151 133)(102 134 152 120)(103 111 153 135)(104 136 154 112)(105 113 155 137)(106 138 156 114)(107 115 157 139)(108 140 158 116)(109 117 159 131)(110 132 160 118)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 146 63 96)(2 145 64 95)(3 144 65 94)(4 143 66 93)(5 142 67 92)(6 141 68 91)(7 150 69 100)(8 149 70 99)(9 148 61 98)(10 147 62 97)(11 46 84 130)(12 45 85 129)(13 44 86 128)(14 43 87 127)(15 42 88 126)(16 41 89 125)(17 50 90 124)(18 49 81 123)(19 48 82 122)(20 47 83 121)(21 153 76 103)(22 152 77 102)(23 151 78 101)(24 160 79 110)(25 159 80 109)(26 158 71 108)(27 157 72 107)(28 156 73 106)(29 155 74 105)(30 154 75 104)(31 137 52 113)(32 136 53 112)(33 135 54 111)(34 134 55 120)(35 133 56 119)(36 132 57 118)(37 131 58 117)(38 140 59 116)(39 139 60 115)(40 138 51 114)
G:=sub<Sym(160)| (1,56,51,6)(2,7,52,57)(3,58,53,8)(4,9,54,59)(5,60,55,10)(11,89,21,71)(12,72,22,90)(13,81,23,73)(14,74,24,82)(15,83,25,75)(16,76,26,84)(17,85,27,77)(18,78,28,86)(19,87,29,79)(20,80,30,88)(31,36,64,69)(32,70,65,37)(33,38,66,61)(34,62,67,39)(35,40,68,63)(41,130,158,103)(42,104,159,121)(43,122,160,105)(44,106,151,123)(45,124,152,107)(46,108,153,125)(47,126,154,109)(48,110,155,127)(49,128,156,101)(50,102,157,129)(91,138,133,96)(92,97,134,139)(93,140,135,98)(94,99,136,131)(95,132,137,100)(111,148,143,116)(112,117,144,149)(113,150,145,118)(114,119,146,141)(115,142,147,120), (1,73,63,28)(2,29,64,74)(3,75,65,30)(4,21,66,76)(5,77,67,22)(6,23,68,78)(7,79,69,24)(8,25,70,80)(9,71,61,26)(10,27,62,72)(11,33,84,54)(12,55,85,34)(13,35,86,56)(14,57,87,36)(15,37,88,58)(16,59,89,38)(17,39,90,60)(18,51,81,40)(19,31,82,52)(20,53,83,32)(41,148,125,98)(42,99,126,149)(43,150,127,100)(44,91,128,141)(45,142,129,92)(46,93,130,143)(47,144,121,94)(48,95,122,145)(49,146,123,96)(50,97,124,147)(101,119,151,133)(102,134,152,120)(103,111,153,135)(104,136,154,112)(105,113,155,137)(106,138,156,114)(107,115,157,139)(108,140,158,116)(109,117,159,131)(110,132,160,118), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,146,63,96)(2,145,64,95)(3,144,65,94)(4,143,66,93)(5,142,67,92)(6,141,68,91)(7,150,69,100)(8,149,70,99)(9,148,61,98)(10,147,62,97)(11,46,84,130)(12,45,85,129)(13,44,86,128)(14,43,87,127)(15,42,88,126)(16,41,89,125)(17,50,90,124)(18,49,81,123)(19,48,82,122)(20,47,83,121)(21,153,76,103)(22,152,77,102)(23,151,78,101)(24,160,79,110)(25,159,80,109)(26,158,71,108)(27,157,72,107)(28,156,73,106)(29,155,74,105)(30,154,75,104)(31,137,52,113)(32,136,53,112)(33,135,54,111)(34,134,55,120)(35,133,56,119)(36,132,57,118)(37,131,58,117)(38,140,59,116)(39,139,60,115)(40,138,51,114)>;
G:=Group( (1,56,51,6)(2,7,52,57)(3,58,53,8)(4,9,54,59)(5,60,55,10)(11,89,21,71)(12,72,22,90)(13,81,23,73)(14,74,24,82)(15,83,25,75)(16,76,26,84)(17,85,27,77)(18,78,28,86)(19,87,29,79)(20,80,30,88)(31,36,64,69)(32,70,65,37)(33,38,66,61)(34,62,67,39)(35,40,68,63)(41,130,158,103)(42,104,159,121)(43,122,160,105)(44,106,151,123)(45,124,152,107)(46,108,153,125)(47,126,154,109)(48,110,155,127)(49,128,156,101)(50,102,157,129)(91,138,133,96)(92,97,134,139)(93,140,135,98)(94,99,136,131)(95,132,137,100)(111,148,143,116)(112,117,144,149)(113,150,145,118)(114,119,146,141)(115,142,147,120), (1,73,63,28)(2,29,64,74)(3,75,65,30)(4,21,66,76)(5,77,67,22)(6,23,68,78)(7,79,69,24)(8,25,70,80)(9,71,61,26)(10,27,62,72)(11,33,84,54)(12,55,85,34)(13,35,86,56)(14,57,87,36)(15,37,88,58)(16,59,89,38)(17,39,90,60)(18,51,81,40)(19,31,82,52)(20,53,83,32)(41,148,125,98)(42,99,126,149)(43,150,127,100)(44,91,128,141)(45,142,129,92)(46,93,130,143)(47,144,121,94)(48,95,122,145)(49,146,123,96)(50,97,124,147)(101,119,151,133)(102,134,152,120)(103,111,153,135)(104,136,154,112)(105,113,155,137)(106,138,156,114)(107,115,157,139)(108,140,158,116)(109,117,159,131)(110,132,160,118), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,146,63,96)(2,145,64,95)(3,144,65,94)(4,143,66,93)(5,142,67,92)(6,141,68,91)(7,150,69,100)(8,149,70,99)(9,148,61,98)(10,147,62,97)(11,46,84,130)(12,45,85,129)(13,44,86,128)(14,43,87,127)(15,42,88,126)(16,41,89,125)(17,50,90,124)(18,49,81,123)(19,48,82,122)(20,47,83,121)(21,153,76,103)(22,152,77,102)(23,151,78,101)(24,160,79,110)(25,159,80,109)(26,158,71,108)(27,157,72,107)(28,156,73,106)(29,155,74,105)(30,154,75,104)(31,137,52,113)(32,136,53,112)(33,135,54,111)(34,134,55,120)(35,133,56,119)(36,132,57,118)(37,131,58,117)(38,140,59,116)(39,139,60,115)(40,138,51,114) );
G=PermutationGroup([(1,56,51,6),(2,7,52,57),(3,58,53,8),(4,9,54,59),(5,60,55,10),(11,89,21,71),(12,72,22,90),(13,81,23,73),(14,74,24,82),(15,83,25,75),(16,76,26,84),(17,85,27,77),(18,78,28,86),(19,87,29,79),(20,80,30,88),(31,36,64,69),(32,70,65,37),(33,38,66,61),(34,62,67,39),(35,40,68,63),(41,130,158,103),(42,104,159,121),(43,122,160,105),(44,106,151,123),(45,124,152,107),(46,108,153,125),(47,126,154,109),(48,110,155,127),(49,128,156,101),(50,102,157,129),(91,138,133,96),(92,97,134,139),(93,140,135,98),(94,99,136,131),(95,132,137,100),(111,148,143,116),(112,117,144,149),(113,150,145,118),(114,119,146,141),(115,142,147,120)], [(1,73,63,28),(2,29,64,74),(3,75,65,30),(4,21,66,76),(5,77,67,22),(6,23,68,78),(7,79,69,24),(8,25,70,80),(9,71,61,26),(10,27,62,72),(11,33,84,54),(12,55,85,34),(13,35,86,56),(14,57,87,36),(15,37,88,58),(16,59,89,38),(17,39,90,60),(18,51,81,40),(19,31,82,52),(20,53,83,32),(41,148,125,98),(42,99,126,149),(43,150,127,100),(44,91,128,141),(45,142,129,92),(46,93,130,143),(47,144,121,94),(48,95,122,145),(49,146,123,96),(50,97,124,147),(101,119,151,133),(102,134,152,120),(103,111,153,135),(104,136,154,112),(105,113,155,137),(106,138,156,114),(107,115,157,139),(108,140,158,116),(109,117,159,131),(110,132,160,118)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,146,63,96),(2,145,64,95),(3,144,65,94),(4,143,66,93),(5,142,67,92),(6,141,68,91),(7,150,69,100),(8,149,70,99),(9,148,61,98),(10,147,62,97),(11,46,84,130),(12,45,85,129),(13,44,86,128),(14,43,87,127),(15,42,88,126),(16,41,89,125),(17,50,90,124),(18,49,81,123),(19,48,82,122),(20,47,83,121),(21,153,76,103),(22,152,77,102),(23,151,78,101),(24,160,79,110),(25,159,80,109),(26,158,71,108),(27,157,72,107),(28,156,73,106),(29,155,74,105),(30,154,75,104),(31,137,52,113),(32,136,53,112),(33,135,54,111),(34,134,55,120),(35,133,56,119),(36,132,57,118),(37,131,58,117),(38,140,59,116),(39,139,60,115),(40,138,51,114)])
Matrix representation ►G ⊆ GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 35 | 0 | 0 |
0 | 0 | 6 | 35 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 25 | 0 | 0 |
0 | 0 | 13 | 39 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
0 | 0 | 0 | 0 | 9 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,6,0,0,0,0,35,35,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,2,13,0,0,0,0,25,39,0,0,0,0,0,0,0,9,0,0,0,0,9,0] >;
53 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | ··· | 4M | 4N | 4O | 4P | 4Q | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | ··· | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 8 | ··· | 8 | 4 | ··· | 4 |
53 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | 2+ (1+4) | D4⋊2D5 | D4⋊6D10 |
kernel | C42.166D10 | C4×Dic10 | D4×Dic5 | C23.18D10 | C20.17D4 | C5×C4⋊1D4 | C4⋊1D4 | C20 | C42 | C2×D4 | C10 | C4 | C2 |
# reps | 1 | 2 | 4 | 4 | 4 | 1 | 2 | 8 | 2 | 12 | 1 | 8 | 4 |
In GAP, Magma, Sage, TeX
C_4^2._{166}D_{10}
% in TeX
G:=Group("C4^2.166D10");
// GroupNames label
G:=SmallGroup(320,1385);
// by ID
G=gap.SmallGroup(320,1385);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,219,1571,570,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations